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The unfolding of inertial instability in intially barotropic vortices in a uniformly
rotating and stratified fluid is studied through numerical simulations. The vortex
dynamics during the instability is examined in detail. We demonstrate that the
instability is stabilized via redistribution of angular momentum in a way that
produces a new equilibrated barotropic vortex with a stable velocity profile. Based
on extrapolations from the results of a series of simulations in which the Reynolds
number and strength of stratification are varied, we arrive at a construction based
on angular momentum mixing that predicts the infinite-Reynolds-number form of
the equilibrated vortex toward which inertial instability drives an unstable vortex.
The essential constraint is conservation of total absolute angular momentum. The
construction can be used to predict the total energy loss during the equilibration
process. It also shows that the equilibration process can result in anticyclones
that are more susceptible to horizontal shear instabilities than they were initially,
a phenomenon previously observed in laboratory and numerical studies.

1. Introduction
Centrifugal instability was first investigated by Rayleigh (1916). He showed that

a steady, circularly symmetric, inviscid swirling flow with swirling velocity V (r) is
unstable when the magnitude of angular momentum L =V r decreases with increasing
radius r in some region of the flow. The criterion for instability is that the Rayleigh
discriminant Φ < 0 where

Φ =
1

r3

dL2

dr
=

1

r3

d(V r)2

dr
(1.1)

(see figure 1a for symbol definitions). He used an energy argument, imagining two
fluid rings of equal volume to exchange positions in a homogeneous fluid while
preserving angular momentum. If both rings are within the domain where Φ < 0,
the change in kinetic energy of the two fluid rings is negative and hence energy
is liberated which implies instability. For a given velocity V (r) there is a balance
between the centrifugal force V 2/r and the radial pressure gradient ∂rp. A single
fluid ring, being displaced a small distance δr from its original position, conserving
its angular momentum (or circulation) while leaving the pressure field unchanged,
will accelerate whenever Φ < 0 at its original location. However, if Φ > 0 it will tend
to return to its original location. In this sense the instability can be viewed as due
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Figure 1. (a) Diagram defining the polar coordinate system and velocity components for a
circular vortex; v is the swirl velocity, w the vertical velocity component and u the radial
velocity component. (b) Inertial instability starts in an unstable region as toroidal vortices (‘rib
vortices’) of alternating sign. (c) Side view indicating that in a stratified environment lateral
and vertical mixing of density may occur.

to an unstable balance between the centrifugal force and the pressure gradient. The
instability manifests itself as overturning motions in the meridional (r, z)-plane (see
figure 1b). In Taylor–Couette flow these motions are the well-known toroidal vortices
observed in a fluid contained in between two rotating concentric cylinders when
Φ < 0 (Drazin & Reid 1981).

In an attempt to explain the great difficulty in creating stable anticyclones in a
rotating homogeneous fluid, Kloosterziel & van Heijst (1991) extended Rayleigh’s
criterion and found that the Rayleigh discriminant becomes

Φ =
1

r3

dL2

dr
=

2L

r2

1

r

dL

dr
= (2V/r + f )(ωz + f ), (1.2)

where

L = V r +
1

2
f r2 and ωz =

1

r

dV r

dr
(1.3)

are the absolute angular momentum (with V the (relative) velocity in the rotating
reference frame) and the relative vorticity component in the z-direction (along the
axis of rotation), respectively; f is the Coriolis parameter. Equation (1.2) can be
found in Sawyer (1947). In the older meteorological literature it is also called
‘dynamic instability’, ‘inertial instability’ when formulated in terms of motions in
a rotating frame of reference and ‘symmetric instability’ because the perturbations
are axisymmetric or invariant in the basic flow direction.

While (1.1) and (1.2) apply to homogeneous and incompressible fluids, Solberg
(1936) considered the far more complicated question of the stability of atmospheric
compressible zonal flows circulating about the Earth with no variation with longitude.
Solberg used a ‘displaced ring’ argument which leads to the criterion for instability

2L

r2
Q =

(
2V

r
+ f

)
Q < 0, (1.4)

where Q is the Ertel potential vorticity. In an inviscid adiabatic fluid the potential
vorticity is conserved, i.e. DQ/Dt = 0, as is absolute angular momentum when the flow
remains circularly symmetric, i.e. DL/Dt = 0. Under such circumstances the product
LQ is conserved, as well as its sign which determines stability. Hence, in order to
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reach a stable equilibrium, viscous and diffusive effects are required to break the
constraints of angular momentum and potential vorticity conservation.

Here we extend our earlier work (Carnevale et al. 1997; Orlandi & Carnevale 1999)
on the (in)stability of barotropic circular vortices in rotating homogeneous fluids to
such vortices embedded in uniformly stratified fluids. In this case the criterion (1.4)
corresponds to Φ < 0 if we identify Q with absolute vorticity, that is Q =ωz + f .
With fully nonlinear simulations, we investigate the unfolding of the instability in
both anticyclones and cyclones. They are subjected to Coriolis forces represented by a
constant Coriolis parameter f and the environment has constant buoyancy frequency
N . Unlike in our earlier studies (which were fully three-dimensional), here we only
allow purely symmetric evolutions, thus isolating the effects of pure inertial instability
from other possible instabilities that may occur. We look at questions such as: In the
linear stage what is the preferred (fastest growing) vertical scale as a function of the
Reynolds number Re and the stratification (as measured by N)? Does the nonlinear
evolution reach a steady state and if so what is this state and how does it differ from
the initial state? What can one say about the stability of the final state? How much
energy is lost during the unfolding of the instability due to dissipation, density mixing
and internal wave radiation? This study is an attempt to answer such questions. Some
of our findings are analogous to those found in previous studies of different types of
flows and when appropriate this will be noted.

In § 2 we first discuss some pertinent linear theory. In § 3 we outline the numerical
model, the boundary conditions and the model vortices. In § 4 we proceed with a
detailed example of the unfolding of the instability in a particular anticyclone. This
is just one example of many simulations that form the basis for the results presented
in § 5 and § 6. In § 4 we discuss, in addition to the evolution of the basic flow, the
accompanying density mixing and internal wave radiation. In § 5 we continue with a
systematic study of the instability of an anticyclone with particular emphasis on the
variations with Re and N . For a limited range (limited by computational feasibility)
of either parameter, we determine the preferred vertical scales of the instability and
growth rates in the early stages of the evolution. After the linear stage of the unfolding
of the instability, the highly nonlinear stage is studied in which the initially regular
‘stacks’ of overturning cells become highly distorted and start to move out of the
region of instability (where Φ < 0) into the inertially stable regions. These outward
and inward motions advect and mix absolute angular momentum L. Ultimately a
new vortex appears and we present evidence that for increasing Re the final (inertially
stable) vortex tends to be in solid-body rotation in its core but motion rapidly
decreases beyond its position of peak velocity. This solid-body rotation corresponds
to L ≈ 0 which is the result of mixing equal amounts of both positive and negative
L while preserving total L. We then offer our first hypothesis regarding the expected
final velocity profiles for very high Reynolds numbers and the energy losses one may
expect due to inertial instability.

In § 6 we study the unfolding of the instability in cyclones. After first discussing
again the scale selection and growth rates in the linear stage of the evolution, we
study the equilibrated cyclones that result from the instability. Here we find that the
absolute angular momentum is mixed to an approximately constant positive value Lc

by the instability. The range over which this happens generally does not penetrate
all the way to the centre of the vortex. We offer our second hypothesis regarding
the expected final velocity profiles for very high-Reynolds-number cyclones and the
energy losses one may expect due to inertial instability. In § 7 we summarize the main
results.
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2. Linear theory
For an incompressible fluid, in cylindrical coordinates the governing equations on

the f -plane with the Boussinesq approximation are

∂u

∂t
+ u · ∇u − v2

r
− f v = − 1

ρ0

∂p

∂r
+ ν

(
∇2u − u

r2
− 2

r2

∂v

∂θ

)
, (2.1)

∂v

∂t
+ u · ∇v +

uv

r
+ f u = − 1

ρ0r

∂p

∂θ
+ ν

(
∇2v − v

r2
+

2

r2

∂u

∂θ

)
, (2.2)

∂w

∂t
+ u · ∇w − b = − 1

ρ0

∂p

∂z
+ ν∇2w, (2.3)

∂b

∂t
+ u · ∇b + N 2w = κ∇2b, (2.4)

1

r

∂(ru)

∂r
+

1

r

∂v

∂θ
+

∂w

∂z
= 0. (2.5)

Here the Laplace operator, the gradient and u are

∇2 =
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
, ∇ = er

∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
, u = eru + eθv + ezw

(2.6)

(see figure 1a for symbol definitions). In the above equations the total density ρ has
been decomposed into a background stratification ρ̄(z) and a perturbation ρ ′, while
with the Boussinesq approximation the total density ρ̄ + ρ ′ has been replaced in
(2.1)–(2.3) by a constant reference density ρ0 where it appears in the denominators.
b = −gρ ′/ρ0 is the buoyancy and N2 = −(g/ρ0)dzρ̄(z) the square of the buoyancy
frequency with g the gravitational constant. The kinematic viscosity ν and diffusivity
κ will be assumed constant. The pressure p is the deviation from the background
hydrostatic pressure.

Setting ν = κ =0, consider a steady barotropic vortex v = V (r) that is in cyclo-
geostrophic balance

V 2

r
+ f V =

1

ρ0

dP

dr
, (2.7)

while u, w, ρ ′ = 0. In (2.7) the pressure p =P (r). Introducing perturbations u′, v′, w′, ρ ′

and p′ independent of the azimuthal angle θ and linearizing (2.1)–(2.5) about
the balanced state (2.7) a set of equations follows with which one can show that
(Kloosterziel & Carnevale, unpublished manuscript)

d

dt

1

2

∫∫∫
ρ0

(
u′2 +

(2V/r + f )2

Φ
v′2 + w′2 +

b2

N2

)
dV = 0, (2.8)

where dV = r dr dz dθ stands for the volume integral over the domain and Φ is the
Rayleigh discriminant (1.2). Equation (2.8) is valid for flows bounded above and
below by horizontal rigid boundaries so that w′ vanishes there. We can consider either
a cylindrical vertical rigid wall far from the vortex where u′ would have to vanish or a
horizontally unbounded domain and require that u′ vanishes ‘fast enough’ for r → ∞.

Considering only statically stable background stratification (N2 > 0), we see that
if Φ > 0 everywhere, the flow is linearly stable. If Φ < 0 in some region, there may
be instability since u′, v′, w′ and b can grow without bounds without violating the
conservation law (2.8). There are at least three other ways to prove linear stability
when N2 > 0 and Φ > 0: by extending Rayleigh’s (1916) ring exchange argument
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to stratified rotating fluids, by using Solberg’s (1936) ‘displaced ring’ argument or
by Ooyama’s (1966) method which is based on Fjørtoft’s (1950) ‘energy method’.
We believe (2.8) is a novel and elegant addition to these alternatives. It should be
remembered that stability is only established with respect to circularly symmetric
perturbations. Vortices with Φ > 0 everywhere (inertially stable) may be unstable
to barotropic instabilities, i.e. horizontal shear instabilities that involve θ-variations
(see for example Carton & McWilliams 1989; van Heijst, Kloosterziel & Williams
1991; Carnevale & Kloosterziel 1994). Recently, Billant & Gallaire (2005) established
analytically with a normal modes analysis that for a class of inertially unstable vortices,
generally in the linearized dynamics the circularly symmetric (inertial) instabilities are
the most dangerous, that is, their growth rates exceed those of non-axisymmetric
instabilities (see also Gallaire & Chomaz 2003).

If one writes u′ = ∂zψ, w′ = −1/r∂rrψ , a single equation (the so-called Eliassen–
Sawyer equation) can be derived for the meridional streamfunction ψ (see for example
Hua, Moore & Le Gentil 1997b where this is done for a parallel shear flow on the
equatorial β-plane). Assuming normal-mode solutions of the form ψ = exp(st)Ψ (r, z)
exist, with ψ = 0 at the top and the bottom and also at r =0 and in the limit r → ∞,
one finds that ∫∫∫ [

(s2 + N2)

∣∣∣∣1r ∂Ψ r

∂r

∣∣∣∣
2

+ (s2 + Φ)

∣∣∣∣∂Ψ

∂z

∣∣∣∣
2
]

dV = 0. (2.9)

This is valid for any N2(z) and Φ(r) (Kloosterziel & Carnevale, unpublished
manuscript). Thus it is seen that if Φ < 0 in some region, then s < |Φ|1/2m , where

|Φ|m = max{−Φ}. That is, |Φ|1/2
m is the upper limit for the growth rates, for any

N2 � 0. If N2 = constant, normal modes solutions are allowed with ψ = exp(st)
sin(mπz/H )Ψm(r) with the bottom at z = 0 and the top at z =H and m = 1, 2, . . . .

One then finds that at the transition from stability to instability (s = 0), Ψm satisfies
a simple equation which shows that there is a critical vertical wavenumber m =mc

(the vertical cutoff wavenumber) so that for m > mc there will be instability, for
m < mc stability. Further one finds that mc ∝ N . An early study where this was first
explicitly shown is that of Yanai & Tokiaka (1969). That for given N2 there is a
threshold vertical scale above which no growth occurs and that this scale decreases
with increasing N2 (the vertical cutoff scale introduced above) can be understood
as follows: the meridional motions extract energy from the basic azimuthal flow
V (r), which leads to their growth. However, any vertical motion in the stratified
fluid requires work or, in other words, this absorbs some of the liberated energy.
Therefore higher growth rates are associated with ‘flatter’ secondary motions in the
meridional plane. Generally for m → ∞ the highest growth rate, s = |Φ|1/2m , is attained.
This was probably first shown by Stone (1966) for a vertically sheared flow and Yanai
& Tokiaka (1969) for a horizontally sheared flow on the f -plane. Normal modes
analysis (numerical) by Smyth & Peltier (1994 and references therein) and Smyth &
McWilliams (1998) for barotropic vortices also showed that maximum growth rates
are attained at vanishing vertical scales. Billant & Gallaire (2005) established this
analytically with a normal modes analysis for a number of different types of vortices
in a rotating stratified fluid.

As mentioned above, for given stratification, only below a certain cutoff vertical
scale will growth occur in the inviscid limit. But, since viscosity preferentially
damps smaller scales, for increasing stratification this cutoff scale may become so
small that no growth will occur. Thus, for finite Reynolds numbers Re, Φ < 0 is



384 R. C. Kloosterziel, G. F. Carnevale and P. Orlandi

necessary for instability but not sufficient. Only for sufficiently high Re >Rec can the
instability proceed, and this critical Reynolds number Rec will increase with increasing
stratification. Further, since for given N2 and any given Re no growth will occur when
m is below the cutoff wavenumber while for m → ∞ viscous effects will completely
damp growth of high-m-modes, there will be a finite range of vertical wavenumbers
that can exhibit growth if N2 is not too large. (In an analysis of an isolated vortex in
a homogeneous, non-rotating fluid, Gallaire & Chomaz (2003) claim that the upper
limit of this range is m ∝

√
|Φ|mRe). Within this range a maximum growth rate will

be found at a specific vertical wavenumber. Hence, a scale selection will occur in the
sense that if the system is subjected to a small perturbation and this ‘fastest’ mode is
excited, one expects this scale after some time to dominate in the meridional flow field
if the growth rates for neighbouring wavenumbers are well-separated. Generally one
can expect the maximum growth rate and the associated wavenumbers m to increase
with Re. Griffiths (2003a) showed this for general parallel shear flows on the equatorial
β-plane (albeit with the hydrostatic approximation and ignoring horizontal diffusion).
Gallaire & Chomaz (2003) established it numerically for a variety of isolated vortices
in a non-rotating homogeneous fluid. For fixed Re, a change in N2 must also affect the
maximum growth rate and the corresponding vertical scale, but in what way is hard
to predict. Generally (see for example Potylitsin & Peltier 1998; Griffiths 2000b) for
fixed Re, an increase in N2 decreases the maximum growth rate while the associated
vertical wavenumber increases, neither of which is surprising since the higher N , the
more energetically costly will be vertical excursions. Thus increasing N decreases the
vertical wavelength of the instability.

3. Numerical model and simplifying assumptions
The unfolding of inertial instability in a vortex is investigated with the use of a

numerical model. The evolution of the vortex was simulated with a Navier–Stokes
code in the Boussinesq approximation, i.e. equations (2.1)–(2.5). We only consider
ρ̄(z) linear in z so that N2 is constant. The domain is of finite height, enclosed by
a horizontal lower rigid boundary at z = 0 and an upper rigid lid at some finite
height z = H . For the vertical velocity the boundary condition there is w = 0 (no-flux
condition). Free-slip boundary conditions are used at the top and bottom boundaries,
that is, we set ∂zu = ∂zv = 0 there. In Orlandi & Carnevale (1999) we investigated how
the presence of an Ekman bottom boundary layer changes the stability of barotropic
vortices. Here we isolate the effect of inertial instability from that effect by using
the free-slip condition. In the horizontal r-direction the domain is terminated by a
rigid vertical cylindrical wall at some finite radius r = R. There u =0 (no flux) and
free slip is used again, i.e. ∂rw =0 and ∂v/∂r − v/r = 0. With free-slip boundary
conditions equation (2.2) implies that the total absolute momentum (Ltot =

∫∫∫
L dV)

is conserved (dLtot/dt = 0), where L is defined in (1.3). The boundary condition for
the density field at the top and bottom is the no-flux condition ∂zρ

′ = 0. Similarly, we
take ∂rρ

′ = 0 at r = R.
The code uses a second-order-accurate finite-difference staggered-mesh scheme in

a cylindrical coordinate system. The details of the method are explained in Orlandi
(2000). The code allows arbitrary stretching in the radial and vertical directions. We
concentrated our grid points in and around the instability region. This region can be
expected to be where Φ < 0. The number of gridpoints in the azimuthal (θ) direction
was set to one, so that no azimuthal variations in the various fields are allowed to
develop. Thus these are simulations of axisymmetric flows.
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All results shown below had a resolution of 257 × 257 in the meridional (r, z)
plane. All of the results presented were also checked against those from simulations
with 129 × 129 gridpoints (some with 353 × 353 gridpoints). We found that the
257×257 resolution was adequate for the present purpose of examining a large range
of parameter space with many simulations. For example, we checked how results
varied with vertical resolution for a case with the highest stratification used (N2 = 50),
which theoretically gives the strongest vertical variations. Comparing growth rates at
N2 = 50 showed that the 257 × 257 case gave an accuracy of 0.3 % compared to the
higher resolution case, and 3 % compared to the lower resolution test. In terms of
determining the wavenumber of the fastest growing modes, the tests showed 257×257
resolution gave the wavenumber accurate to better than 3 %. This and other tests
involving the fall-off of the energy spectrum with wavenumber provide confidence in
the data presented within the ranges of Re and N discussed.

In the discussion that follows all dimensional quantities are reported in non-
dimensional form where the time scale is f −1 and the length scale is Lh, the horizontal
scale of the vortex (see below). In most cases the simulations were performed on a
computational domain of length 4Lh in the radial direction and H = Lh in the
vertical. The bottom is at z =0 and non-dimensionally the top is at z = 1. With
these dimensions for the computational domain there was sufficient vertical space to
allow the centrifugal instability within the vortex to fully develop. However, when
investigating the radiation of internal waves by the instability, the radial extent of the
domain was enlarged and a frictional Rayleigh sponge layer was added to prevent
reflection of internal waves from the sidewall.

Non-dimensional parameters of importance are the Reynolds number, defined
as Re = ULh/ν, the Rossby number Ro (defined below), the ratio N/f and the
Prandtl number Pr= ν/κ . We have mainly restricted considerations to one particular
profile and only a few Rossby numbers that guaranteed inertial instability. In all the
simulations we set the Prandtl number equal to one. Values of N/f or N2/f 2 will be
denoted by N or N 2, respectively.

The velocity profile for the barotropic circular vortices that we will study is taken
from a family of profiles parameterized by the steepness of the fall-off of the velocity
field. They are

V (r) = Uvα(r), vα(r) = rα/2 exp
(
− 1

2
rα + 1

2

)
(3.1)

where α > 0 is the steepness parameter. The radius r has been non-dimensionalized
with the horizontal length scale Lh. For all α, vα(r = 1) = 1, which is its peak value
(see figure 2a). Note that the velocity profile, after reaching its peak, falls off faster
to zero for larger α, which is what we mean by ‘steeper’. U is a velocity amplitude.
The relative vorticity ωz for this profile at r = 0 is non-zero if we choose α = 2 but
vanishes for α > 2. Thus with this family we can cover both these situations. Most
detailed results presented below are from simulations with vortices with α = 3 since no
essential difference in the evolution is observed between the α = 2 and α = 3 vortices
But some results for α = 2 and other types of vortices are mentioned in § 5.3 and
shown in § 7.

In the simulations we took f positive, so U > 0 corresponds to a cyclone, U < 0 to
an anticyclone. The Rossby number is based on the peak velocity U , which occurs
at a distance Lh from the centre, i.e. we define Ro = U/f Lh, which is positive for
cyclones, and negative for anticyclones.

Non-dimensionally the Rayleigh discriminant (1.2) is

Φ = (2Ro vα/r + 1)(Ro ωz + 1), ωz = (1/r)dr (rvα). (3.2)
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Figure 2. (a) The velocity profile vα(r) for α = 2 and 3. (b) The absolute angular momentum
L (solid line) and absolute vorticity Q (dashed line) for the case α = 3 and Ro = −1. The
Rayleigh discriminant Φ = (2L/r2)Q � 0 for a range of r-values indicated by vertical dashed
lines (between r = 1 and r ≈ 1.4). In this range L � 0 and Q � 0. The minimum value of Φ

is −0.56 thus |Φ|1/2
m =0.75 (the upper limit for the inviscid growth rate). When Ro > −0.39,

Φ � 0 for all r in which case both L � 0 and Q � 0.

The condition for instability in an ideal fluid (Φ < 0) will be satisfied for large enough
negative and positive Rossby numbers.

The instability is initiated by giving the vortex a small random perturbation, by
multiplying the velocity profile (3.1) at each gridpoint by a random number of unit
mean. Specifically we take the initial velocity field to be

v(r, z) = (1 + η(r, z))V (r), (3.3)

where η is a random process of zero mean and standard deviation 10−3.

4. An example of inertial instability
In this section we examine in detail a representative example of the unfolding

of inertial instability of an anticyclone with the α = 3 profile and an initial Rossby
number Ro = −1. Instability is expected in an annulus between the dashed lines in
figure 2(b) where Φ is negative. This region extends from the top to the bottom of
the domain. The instability region is where L < 0 and Q > 0, i.e. where the Rayleigh
discriminant (1.2) Φ = 2LQ/r2 < 0. Although strictly speaking Q = N2(ωz + f ) when
there is no vertical shear, we will refer to ωz + f as the potential vorticity
Q =(1/r)dL/dr since N2 = constant.

4.1. Angular momentum redistribution

In figure 3, we visualize the evolution of the instability with contour plots of the
azimuthal vorticity ωθ = ∂zu − ∂rw = 0, which is a good diagnostic of the overturning
motions in the meridional plane. In this example N2 = 2 and the Reynolds number
is Re= 104. The instability starts within the instability region as predicted by inviscid
linear theory as discussed above (between the solid vertical lines in figure 3a). The
signature of the linear phase of the instability is a vertical stack of elliptical regions of
high values of ωθ of alternating sign. Each of these elliptical structures corresponds to
a horizontal ring of ωθ that encircles the primary vortex. These rings are referred to as
‘rib vortices’. Early in the evolution, the rings are regular and neatly aligned vertically.
By t =15 (figure 3b), nonlinear interactions lead to pairing of opposite-signed rings
and this causes propagation beyond the bounds of the unstable region (figure 3c).
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(a) (b)

(c) (d)1

z

0
0.6

r
1.6

Figure 3. Evolution of ωθ in a vertical cross-section for the anticyclone with α = 3, Ro = −1,
N2 = 2 and Re= 104. Thick/thin lines are used for +/− contours. The alternating sign of ωθ

indicates the alternating sense of rotation of the rib vortices that initially start in unstable
regions (between the two vertical lines in (a) and (b)). The times are (a) t =10, (b) t = 15,
(c) t = 20 and (d) t =25. The contour intervals �ωθ for each panel are: (a) 0.11, (b) 0.75, (c) 1.9
(d) 1.8. Pairing of rib vortices leads to propagating ‘dipoles’ which mix angular momentum
both inside and outside the initial instability domain. In each panel in the horizontal only
a portion of the computational domain, which extended from r = 0 to r = 4, is shown, i.e.
0.6 � r � 1.6.

A given vortex ring becomes part of both inwardly and outwardly propagating
mushroom-shaped dipolar vortex structures. Near the inner edge of the instability
region, a vortex ring with, say, positive-ωθ pairs with the vortex below it to form
an inwardly propagating dipolar vortex structure. At the same time, the part of this
vortex ring that is near the outer boundary of the instability region pairs with the
vortex above it to form an outwardly propagating dipolar structure. These structures
propagate both inwardly and outwardly from the initial instability region into the
initially stable regions. Such pairing and propagation of the meridional disturbances
has previously been observed in laboratory experiments by Afanasyev & Peltier (1998)
and by Griffiths (2003b) in a numerical study of zonal flow on the equatorial β-plane.
Strong nonlinear interactions between the vortices results in the small-scale vorticity
seen in figure 3(d). Note that in these panels the dimension of the section of the
computational domain shown is the same in the vertical and horizontal directions.
Thus one can appreciate the true aspect ratio of the structures and note that they are
much longer in the radial than the vertical direction.
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Figure 4. Evolution of the swirl velocity v in a vertical cross-section. (Re = 104, N2 = 2). The
contour interval is �v = 0.1. The times are (a) t = 15, (b) t = 20, (c) t = 25, (d) t = 35, (e) t = 80
and (f) t = 300.

The contour plots of ωθ give us insight into the dynamics of the instability but do
not provide an idea of the degree to which the primary vortex is changed or distorted
by the unfolding of the instability. The change to the primary vortex is visualized
in figure 4 by showing the evolution of the contours of v. For the unperturbed
barotropic vortex, the contours are vertical lines. By t = 15 (figure 4a), there is already
a significant level of disturbance. At t = 20 (figure 4b), nonlinear pairing of the vortex
rings has produced the characteristic mushroom shapes associated with the dipolar
heads seen in figure 3(b). In figures 3(c) and 3(d) (times t = 20 and 25), it was
surprising to see how much more intense the gradients of vθ had become in the outer
region (that is where r is larger than the limit of the linear instability region) than in
the inner region. We checked each of the contributions to the evolution of vθ as given
by equation (2.2) against the numerical simulations and found that the advective
terms at these times are far stronger than the Coriolis terms and alone are responsible
for the asymmetry. By t = 35 (figure 4c) the inwardly advancing disturbance has
nearly halted and the perturbation to v has weakened, while the perturbations at the
outwardly propagating edge of the disturbance remain strong. By t =80 (figure 4e),
active dipolar pairs are no longer evident and the contours are relaxing toward a
barotropic state. By t = 300 (figure 4f ) the evolution has almost come to a halt, aside
from slow oscillations within the re-formed vortex. A new stationary vortex which
appears to be inertially stable has been formed.
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Figure 5. (a) Vertically averaged swirl velocity v̄(r, t) =
∫ 1

0 v(r, z, t)dz at t =0, 20 and 80 (solid

curves) and t = 160 (dotted curve) with Re= 104 and N2 = 2. At t = 80, when the vortex has
almost reached a new quasi-steady state, the amplitude has decreased a significant amount
while angular momentum mixing has significantly changed the velocity profile between a
position near the centre of the vortex and beyond the outer edge of the initially unstable
region. (b) Angular momentum L̄ = v̄r + 1

2
f r2 at the same times as (a). The vertical solid lines

indicate the initial instability region.

A useful diagnostic of the evolution of the primary vortex is v̄(r, t) =
∫ 1

0
v(r, z, t) dz,

the vertically averaged value of v. The evolution of v̄ shown in figure 5 demonstrates
that most of the deformation and re-formation of the vortex is complete by t = 80.
The thin vertical lines in this plot indicate the initial instability region. The evolution
of the profile in figure 5(a) from t = 0 to t = 80 proceeds relatively rapidly compared
to the subsequent evolution due to diffusion of momentum. The dotted curve shows
the profile at t = 160, and it is evident that the viscous evolution of the laminar flow
is on a relatively slow time scale compared to the more rapid mixing phase that
preceded it.

The nearly linear part of the profile at t = 80, seen in figure 5(a), extending from
about r = 0.5 to r = 1.5 is interesting. It is not solid-body rotation, which would
require v̄ ∝ r . Figure 5(b) shows that the instability has caused a redistribution of
the initial absolute angular momentum, L = V r + 1

2
f r2, that extends well beyond the

instability region. It is seen that |L| has greatly been reduced within the vortex.
For the anticyclone, the Rayleigh discriminant (1.2) Φ is negative where L (1.3) is

negative and Q = (1/r)dL/dr is positive. Mixing angular momentum L will tend to
make it more uniform and hence decrease Φ . The instability reduces Φ in the region
where it was originally negative by decreasing the magnitude of both L and Q. As can
be inferred from figure 5(b), even at t = 160Φ is still negative in a range that encom-
passes the original instability range, although much reduced in magnitude. The total
amount of energy lost between t = 0 and t = 80 was 20 % of the initial total energy
in this case with N 2 = 2 and Re= 104. The non-dimensional time t = 80 corresponds
to approximately seven days at the pole and somewhat longer at mid-latitudes.

4.2. Density mixing and internal wave radiation

The instability also strongly perturbs the density. In figure 6 we show the evolution
of the isopycnals. The times of the panels are the same as in the sequence showing v

in figure 4. At t = 20 and t =25 (figures 6b and 6c) we see overturns that are due to
the action of the strong dipolar vortices seen in figures 3(c) and 3(d). The overturns
result in gravitational instability, producing mixed regions of low stratification as seen
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Figure 6. Snapshots of the isopycnals taken at the same times and covering the same portion
of the domain as in the plots of velocity contours shown in figure 4. (Re= 104, N2 = 2).

at t = 35 (figure 6d). Also there are thin regions of intense stratification separating
the regions of low stratification as has been observed in earlier studies (cf. Carnevale,
Briscolini & Orlandi 2001). When the vortex has substantially relaxed (t = 80), the
isopycnals are again mainly horizontal. We calculated the vertically averaged value
of N taken as a function of r to estimate the amount of mixing that has occurred.
At t =80, this averaged value is about 2 % less than the far-field value. This change
is relatively small given that during the more vigorous phases of the evolution, the
local value of N fluctuates by as much as 50 % over large regions. Over the course of
the simulation the maximum perturbation potential energy remains small, reaching
at most 0.6 % of the total energy.

During the instability, energy may be lost through internal wave radiation. To
measure the amount of energy lost, we added a sponge layer and kept track of the
amount of energy absorbed there. This layer extends from from r = 10 to r = 15. In
that region, and only in that region, the waves were damped by a Rayleigh friction,
that is a damping of the velocity and density perturbations at a rate proportional to
their amplitudes. The coefficient of proportionality was adjusted so that the damping
was strong enough to absorb the internal waves before they reached the sidewall at
r = 15, and small enough to avoid any reflections at r = 10. The frequency spectra of
perturbations at radial positions outside the vortex, beyond r = 3, showed that the
frequencies lie within the range from f to N as is expected from linear internal wave
theory. For the case with N = f , we found essentially no oscillations in the far field
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as expected, since when N = f the system cannot support freely propagating internal
waves. We found that the amount of energy lost via internal wave radiation in the
N2 = 2 case is less than 1/100 of a percent of the total energy loss. For larger values
of N2 the relative loss is even smaller than this. Thus, it seems that pure inertial
instability leads to very little internal wave radiation. Larger amounts of internal
wave energy may be generated if the constraint of circular symmetry is relaxed. In
Carnevale et al. (1997) we did find some evidence for this but did not study it in
detail. Further computational effort (with fully three-dimensional simulations) will
be required to establish whether significant amounts of internal wave energy can be
emitted by inertially unstable vortices if they are allowed to develop freely.

5. Anticyclones for a range of Re and N

The example presented above is one of a large set of more than a thousand
simulations that we have performed to systematically study the effect of variation of
both N and Re on the inertial instability. In what follows, we will first present our
results for the anticyclone with α = 3, Ro = −1.

5.1. Vertical scale selection and growth rates

As mentioned in § 2, increasing N is expected to decreases the vertical wavelength of
the instability. This is illustrated in figure 7. Comparing panels (a) with (b), or (c)
with (d), we see that increasing N results in flatter rib vortices. Comparing (a) with
(c) or (b) with (d), we see that increasing Re also results in flatter rib vortices. The
part of the computational domain shown in these panels has dimensions 1 × 1. Here
again the aspect ratio of the structures in the figure is the physical aspect ratio.

To make a quantitative comparison of dominant vertical scales for different N

and Re, for each simulation we determined the radial position r where the vertically
averaged ω2

θ was maximal and then calculated the Fourier sine transform F (m) of ωθ

with respect to z at that radial position. The vertical wavenumber representative of
the disturbance was then calculated as the mean of the vertical wavenumber weighted
by the vertical wavenumber spectrum:

m ≡
∑

m′F (m′)2∑
F (m′)2

, (5.1)

where the sums run from m′ =1 (representing the largest vertical mode) to m′ =M −1
where M is the number of gridpoints in the vertical direction. A plot of m measured
in this way, in the early stages of the evolution, is shown as a function of Re in
figure 8(a) and as a function of N2 in figure 8(b). The analysis was performed at
time t = 5 because for all of the simulations involved, this time was in the exponential
phase of the growth of meridional kinetic energy. Both panels show monotonic growth
of m with N2 and Re, respectively; m behaves as m ∝ N1/5 for the high values of
N and Re1/3 for the high values of Re. These power laws are drawn with thick solid
lines in the corresponding panels. The ‘best-fit’ between prosed parameterized curves
and data here and elswhere in the paper is obtained using the standard ‘gnuplot’
algorithm.

During the early phase of the instability, as the rib vortices are growing in
amplitude but are not yet strong enough to begin forming dipolar structures, the
meridional energy associated with the motion in the (r, z)-plane grows exponentially.
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Figure 7. Contours of the vorticity ωθ in a vertical cross-section during a very early phase in
the evolution (t =10). These graphs illustrate the role the Reynolds number and N2 play in
the selection of the dominant vertical wavelength of the instability. �ωθ is the contour interval
used in each frame. (a) N2 = 0, Re= 5×103, �ωθ = 0.1. (b) N2 = 20, Re =5×103, �ωθ = 0.01.
(c) N2 = 0, Re= 20 × 103, �ωθ = 0.7. (d) N2 = 20, Re= 20 × 103, �ωθ = 0.05.

The meridional energy in the axisymmetric flow can be written as

K =
1

2

∫∫
ρ0(u

2 + w2)r dr dz.

For the simulations that we performed with various values of N and Re, the meridional
energy always showed a period of exponential growth and the time t = 5 fell in that
range. To give an estimate of γ , the growth rate for the instability, or more specifically
the growth rate for the amplitude of the meridional velocity field, we calculated

γ =
1

2

1

K

dK

dt
(5.2)

at time t = 5. The factor of 1
2

takes into account that the velocity enters K

quadratically.
As seen above (figure 8a) the vertical scale of the instability decreases with increasing

N , suggesting that viscosity will act more efficiently. This competes with the inviscid
tendency of the smaller scales to grow more rapidly. The net effect is found to be that
for increasing N the growth rates decrease (figure 9a) according to γ = γ0(1 − N/Nc)
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Figure 8. Vertical wavenumber m of the instability as a function of (a) N2 with fixed Re= 104

and (b) Re with fixed N2 = 5. In each panel, the data (marked by �) is taken at time t = 5
which is during the early part of the exponential growth phase of the meridional energy. Also
shown (thick solid lines) are power-law curves that approximately fit the data.
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Figure 9. The growth rate γ of the meridional energy, measured during the nearly exponential
growth phase of the meridional energy. (a) The growth rate as a function of N2 with Re= 104

from simulations (data points) with a fit to the function γ = γ0(1 − N/Nc) (γ0 = 0.56 is fixed
to match the data point at N = 0, and then choice Nc = 6.8 gives the best overall fit between
the data points and the function.) (b) The growth rate as a function of Re with N2 = 5 with a
fit to the function γ = |Φ|m(1 − (Re/Rec)

−1/3) (where |Φ|m = 0.75 is the theoretical upper limit
and Rec = 1.3 × 103 is chosen for the best overall fit).

where γ0 is the growth rate for N =0, and Nc is the critical point where N is too large to
permit growth for the given Re. Both of these parameters are functions of Re. On the
other hand, for fixed N , increasing Re allows the growth of shorter-wavelength modes
which, in accord with inviscid theory, have higher growth rates (figure 9b). Note that
in both panels γ is below the inviscid maximum growth rate |Φ|1/2m = 0.75. Comparing
figure 8(b) with 9(b), we see that as Re is increased the vertical wavenumber of the
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Figure 10. (a) The vertically averaged swirl velocity v̄(r, t) =
∫ 1

0 v(r, z, t) dz shown at times
when most of the meridional motion has ceased and the vortex has reached a quasi-steady
state. For N = 0 angular momentum mixing leads to solid-body rotation in the core of the
vortex. For N = 0 the curve is at time t = 200, for all other cases t = 80. For N2 = 40, except
for the effects of slow viscous diffusion, the profile has barely changed from the initial α = 3
profile. In each case shown Re =104. (b) v̄(r, t) at time t = 80 for N2 = 40 with Re= 104 (thick
solid), 20 × 103 (long dash), 30 × 103 (dash), 105 (short dash). The initial condition is also
shown (thin solid).

instability increases and so does the corresponding growth rate γ . For ever higher
Reynolds number we should expect that γ continues to increase, but as we showed

in § 2 it can never exceed the upper bound |Φ|1/2m . With this in mind, the data were

compared to the formula γ = |Φ|1/2
m (1 − (Re/Rec)

−ξ ). An excellent fit was found with
exponent ξ = 1/3 and Rec (the critical Re for a given N2) = 1.3 × 103.

5.2. Reformation of the anticyclone

The extent to which the vortex velocity profile is changed by the instability for
various values of N is shown in figure 10(a). For very small N , redistribution of
angular momentum occurs all the way to the centre of the primary vortex (r = 0).
This results in a velocity profile that has solid-body rotation in the core. For increasing
N , the range over which the velocity distribution is altered is ever smaller. In each
case, for N � 20, the final structure of the vortex includes a range in which the velocity
v̄(r) appears to have a linear dependence on r and the peak velocity has shifted to
larger r outside the original instability region. In the case of N2 = 40, the velocity
profile is essentially unchanged for this relatively low Reynolds number Re = 104. The
instability with N =0 proceeds with the formation of stronger rib vortices than for
higher values of N . The instability is also more vigorous the higher the Reynolds
number. Thus we are led to speculate that in the limit of Re → ∞ the result of the
instability would be solid-body rotation in the core independent of the value of N .
We thus ask whether the result of instability would be closer to solid-body rotation
for any value of N for a higher Re. In figure 10(b) we show the equilibrated velocity
profiles as a function of Re for a fixed value of N2 = 40. It is seen that the effect
of increasing Re is to bring the curves closer to solid-body rotation in the core of
the vortex. Also note that the slope with which the curve transitions from the new
peak back to the initial curve at large r increases with Re, suggesting an almost
discontinuous transition for very high Re.

The solid-body rotation that is approached in the limit of high Reynolds number is
−(f/2)r in the core. This implies that the absolute angular momentum L̄ approaches
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Figure 11. (a) Absolute angular momentum L̄ = v̄r + 1
2
f r2 at time t =200 for N2 = 0 (thick

solid) and N2 = 5 (dashed) with Re= 50 × 103. The initial state is also shown (thin solid). The
initial inviscid instability region is between the vertical lines. (b) L̄ at time t = 80 for N2 = 40
with Re= 104 (thick solid), 20 × 103 (dashed) and 105 (dotted). The initial condition is also
shown (thin solid). The L̄-distributions in (b) correspond to the v̄ profiles shown in figure 10(b)
but with the Re= 30 × 103 case left out.

zero there. This is clearly seen in figure 11. Panel (a) shows that for fixed high Re,
with decreasing N , L̄ approaches zero from r =0 to beyond the outer edge of the
original instability region. Panel (b) shows the same tendency when N is held fixed
while Re increased.

Figure 11 shows that for finite Re, in the equilibrated states Φ may still negative,
that is, in a range where L̄ < 0 we still have Q̄= (1/r)dL̄/dr > 0. Both are greatly
diminished in amplitude however so that |Φ|m has been reduced to much smaller values
than initially. So, inviscidly these flows would be unstable but no further inertial
instability ensues because viscous damping can overwhelm any inviscid instability
growth if Re is sufficiently small.

Analogous results have been found by Griffiths (2003a, b) for a barotropic parallel
shear flow on the equatorial β-plane. There the criterion for instability is that f Q < 0
and ‘neutralization’ of the flow is effected by the inertial instability by creating a region
with f Q̄ ≈ 0 which encompassed the original instability region (see also Shen & Evans
1998). With finite viscosity, slightly negative f Q̄ were found but sufficiently small in
amplitude for the equilibrated flow to be stable. Griffiths concluded that the instability
leads to a homogenization of Q̄ ≈ 0 to set f Q̄ ≈ 0 there while elsewhere f Q̄> 0.

Another related study is that of Jacquin & Pantano (2002) where the neutralization
of inertially unstable vortices with a superposed axial flow is discussed. There data are
shown that indicate that in the unstable region where Φ < 0 originally, the instability
changes Φ to Φ ≈ 0 and Φ > 0.

5.3. Infinite-Reynolds-number limit

Extrapolating from the results presented above, we can now hypothesize what the
result of inertial instability is in the limit of infinite Reynolds number. Figure 11(b)
shows that the trend with increasing Re is that the equilibrated angular momentum
will be zero from r =0 out to some radius where it will increase rapidly, rejoining
the curve that defines the initial absolute angular momentum. The instability mixes
positive angular momentum from the region beyond the initially unstable region
with negative angular momentum from smaller r values to produce zero angular
momentum. The steepening of the angular momentum curve, as Re increases at
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Figure 12. (a) Construction to determine the new absolute angular momentum L and hence
the new azimuthal velocity field that would result due to mixing of momentum for an
anticyclone in the limit Re → ∞. The thin curve is the angular momentum of the original
α = 3 anticyclonic vortex. The thick curve is the proposed re-equilibrated angular momentum.
(b) The proposed azimuthal velocity field based on the hypothetical equilibrated absolute
angular momentum shown in (a).

the point where it rejoins the initial curve suggests that, in the limit Re → ∞, the
curve will jump from zero to its initial value at some radius rc. A prediction for the
value of rc can be made on the basis of the construction shown in figure 12. Here
rc is just large enough so that the total absolute angular momentum in the initial
profile (thin line) integrated from r = 0 to r = rc is zero. The profile of the proposed
equilibrated L-distribution (thick line) would have completely homogenized absolute
angular momentum out to rc, while leaving L beyond rc unchanged (note that the
total angular momentum

∫∫∫
LdV of the proposed equilibrated velocity profile will

equal that of the initial velocity distribution). Thus rc can be computed from the
formula ∫ rc

0

Lr dr =

∫ rc

0

(rV (r) + f r2/2)r dr = 0, (5.3)

where V (r) is the initial velocity distribution.
In other words, the evidence presented above indicates that for all values of N ,

in the infinite-Reynolds-number limit, the instability will completely mix the angular
momentum from r =0 out to rc and will not effect the flow beyond r = rc. The resulting
equilibrated velocity profile based on this construction is shown in figure 12(b). We
have solid-body rotation with v = −f r/2 from r = 0 to r = rc and the initial velocity
profile beyond. The discontinuity at r = rc agrees with the extrapolation to high Re
expected from figure 10(b) for the profile at high but finite values of Re. One might
ask why the mixing need extend all the way to the axis (r =0); why could it not stop
at some positive value 0 <r < 1 (r = 1 being the lower limit of the unstable region)?
This would create a zone where dL/dr > 0 with L < 0 which would be unstable.
Thus inertial instability will prevent this from happening and the erosion of the L < 0
region will continue down to the only point at which it can terminate without forming
such an unstable zone. That point can only be the origin.

One must bear in mind that a sharp gradient in L at rc can form only in flows
where the circular symmetry is maintained. If this is relaxed, that is if θ-variations are
allowed, the hypothetical equilibrated profile drawn in figure 12(b) and the profiles
for example shown in figure 10 are expected to be unstable to perturbations that
break the circular symmetry (see Afanasyef & Peltier 1998 and remarks in § 7).
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Figure 13. Velocity and potential vorticity profiles for an α = 3 anticyclone with Ro = −1.5
and N = 0. (a) The velocity profiles V for the initial condition (thin line), the prediction (thick
line) and the vertically averaged velocity v̄ at t = 160 (Re= 20 × 103 dashed; Re= 40 × 103

dotted). (b) The potential vorticity profile Q for the initial condition (thin line) and the
prediction (thick line). In each panel, the vertical dashed lines delimit the unstable region,
1.06 < r < 1.54.

To check that the prediction based on this construction is also valid for high-
Rossby-number anticyclones, we performed a series of simulations with increasing Ro
and various values of Re. As Ro increases the computational burden also increases
because energetic small scales are produced, and thus we cannot easily go to Ro
much below −1.5 with our current resources. The case Ro = −1.5 (with N = 0) is
illustrated in figure 13. In panel (a), initial and predicted azimuthal velocity profiles
are shown, along with the vertically averaged profiles for the cases Re =20 × 103 and
Re = 40 × 103 at t = 160. Qualitatively, the large drop in magnitude of the velocity
at its peak, the shift in the peak to larger r and the relative steepness of the curves
for r beyond the peak suggest that the prediction is capturing the correct tendency.
Comparison of the two cases shows that with increasing Re, the velocity minimum
and the steepness of the profile tend toward the predicted values.

We expect that the theoretical construction can be applied to any anticyclone that
has an initial L-distribution qualitatively similar to that shown in figure 2(b) or
figure 12(a), that is, an L-distribution with L < 0 for some finite range starting at the
centre r = 0 and with L > 0 and monotonically increasing for larger r . To check this,
we have also performed a series of simulations for the α = 2 case and found that
there too, for high Reynolds numbers, solid-body rotation was attained in the core of
the equilibrated vortex (see figure 27 below for an example). Additionally, unstable
anticyclonic vortices with a Gaussian vorticity distribution (the so-called Lamb–
Oseen vortex) were also tested. Although these are non-isolated vortices, their angular
momentum distribution is qualitatively similar to the isolated anticyclones tested
above. The redistribution of angular momentum proceeds in a manner completely
analogous to that in unstable isolated anticyclones. Thus the proposed construction
for the redistribution of angular momentum in the Re → ∞ case also applies to
unstable non-isolated anticyclones.

The concept of angular momentum mixing underpins the construction that we have
given here. The construction predicts Q =0 in the region of uniform L (r < rc). For
r > rc we have ∫ r>rc

0

Qr dr = L(r > rc)
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Figure 14. (a) The ratio of final equilibrated Eeq energy to initial energy E0 for the
hypothetical transition of an unstable anticyclonic vortex to the final stable vortex due to
mixing of angular momentum. Two cases are shown: α = 2 (dashed line) and α = 3 (solid line).
(b) The position rc of the peak velocity in the proposed equilibrated azimuthal velocity for an
initial profile with α = 2 (dashed line) and α = 3 (solid line).

which implies that total Q is conserved because for r > rc, L is unchanged. Hence,
one could interpret the ‘neutralization’ of the flow by inertial instability to be due
to potential vorticity mixing while preserving total potential vorticity. But this is
insufficient to predict the equilibrated state without also considering the absolute
angular momentum mixing subject to conservation of total angular momentum. For
example, consider the potential vorticity distribution for the Ro = −1.5 case shown
in figure 13(b). The two vertical lines mark the end points, r0 and r1, of the unstable
region (where L < 0 and Q > 0). If we consider just mixing Q from the region
where it is negative with that in the region where it is positive, in a way that
conserves the total Qtot =

∫
Qrdr , the predicted end point of the mixed region would

coincide with r1 the right-hand end of the unstable region, because there L(r1) = 0 and∫ r1

0
Qrdr = L(r1) Then the presumed equilibrated velocity profile would be solid-body

rotation, v̄ = − 1
2
f r between r = 0 and r = r1 <rc, which is continued for r > r1 by the

original velocity profile. Now since v̄ < V for r < r1 and v̄ = V for r > r1, one sees that
total L would not be conserved (the hypothetical total L would have decreased). So,
how can total Q be conserved in our prediction while also preserving total L? In
this regard figure 13(b) is not complete. With Q =0 between r = 0 and r = rc, total
Q would appear not to be conserved; in fact it would appear to have decreased. So
some positive Q appears unaccounted for. But as figure 13(a) indicates, for finite Re
the equilibrated profile has an associated Q that takes very large positive values in a
narrow region for r > rc. In our infinite-Reynolds-number limit, this mathematically
reduces to a δ-function behaviour at r = rc which accounts for the ‘missing’ positive Q.

With the hypothesized infinite-Reynolds-number profile, we can now predict how
much kinetic energy is lost in the mixing process. The theoretical ratio of the kinetic
energy in the final equilibrated vortex Eeq to the initial energy E0 is shown in
figure 14(a) for both α = 2 and α =3 initial vortices. We see that the more negative
the Rossby number, the more energy is lost during the equilibration. With Ro near
the marginally unstable values (for α = 3, Roc ≈ −0.39; for α = 2, Roc ≈ −0.30) little
energy is lost, while losses near 50 % result if Ro = −2. Also we note that for most
of the range shown, more energy is lost in the equilibration of α = 3 vortices than for
α = 2 vortices.
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Figure 15. (a) The Rayleigh discriminant Φ for the case of a cyclone with α = 3 for Ro = 1.01
and Ro = 1.37. (b) The absolute angular momentum L (solid line) and absolute vorticity Q
(dashed line) for the case α = 3 and Ro = 1.37. The Rayleigh discriminant Φ = (2L/r2)Q � 0
for the range of r-values indicated by vertical dashed lines (between r ≈1.37 and r ≈1.81). In
this range L > 0 and Q � 0. The minimum value of Φ is −0.645 and thus |Φ|1/2

m = 0.80 (the
upper limit for the inviscid growth rate).

For α = 3 and Ro = −1.5, the prediction from figure 14(a) is a loss of 46 %. The
equilibrated flows for this case shown in figure 13(a) have at Re = 20 × 103 a 57 %
loss, and at Re = 40 × 103 a 53 % loss.

Assuming that our hypothesis is correct for any Rossby number, a simple calculation
shows that for large |Ro|, Eeq/E0 ∝ 1/|Ro|, not unlike the trend already seen in
figure 14(a) for still relatively small |Ro|.

6. Cyclones for a range of Re and N

We next examine the effect of inertial instability on cyclones. We chose for the initial
cyclone the same velocity profile as used in the anticyclonic case, that is, the α =3
velocity profile but with U > 0 (see (3.1)). Furthermore, we chose the amplitude U of
the cyclone to be such that the ensuing instability has growth rate γ comparable to
that in our Ro = −1 anticyclonic example (with N = 0 and Re = 10×103). For this we
found that U = 1.37, that is Ro = 1.37 was a good choice. The Rayleigh discriminant
for the cyclone is plotted in figure 15(a) for Ro = 1.37 as well as that for the marginal
case Ro = 1.01. Φ is negative in the Ro =1.37 case in the range 1.37 � r � 1.82 where
Q < 0 (see figure 15b). The width of the instability region is comparable to that in
the anticyclone example with Ro = −1 (see figure 2 or figure 5) and the maximum
speed in the instability range is about 1, which was also the maximum speed in the
instability range for the anticyclone.

6.1. Vertical scale selection and growth rates

In figure 16(a) we compare the variation of the vertical wavenumber of the instability
in the cyclone case (solid line) and the anticyclone case (dashed line). The choice
Ro =1.37 for the cyclone produces a growth curve that matches well the corresponding
curve for the anticyclone with Ro = −1, not only at N =0, but also over the whole
range shown. Comparing the graphs for the variation of the growth rate as Re is
varied in figure 16(b) shows also that they are very similar for both cyclones and
anticyclones. The point at which the curves intersect depends on the choice of Ro
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Figure 16. The maximum (exponential) growth rate γ of the meridional energy, during the
nearly exponential phase of meridional energy growth for a cyclone with Ro = 1.37. (a) The
growth rate as a function of N2 with Re= 104 from simulations (data points) with a fit to
the function γ = γ0(1 − N/Nc) (where γ0 = 0.58 is chosen to match the the data point at N = 0
and Nc = 6.6 is then chosen to give the best overall fit to the data). The dashed line is a line
passing through the corresponding data points in the anticyclonic case shown in figure 9(a).
(b) The growth rate (open circles) as a function of Re with N2 = 5 with a fit to the function
γ = |Φ|1/2

m (1 − (Re/Rec)
−1/3) (solid line) (where |Φ|1/2

m = 0.80, the theoretical maximum inviscid
growth rate and Rec = 1.4 × 103) for the case Ro = 1.37. For comparison, the data (filled
circles) and the corresponding fit (dashed line) are given for the anticyclonic Ro = −1 case as
previously shown in figure 9(b).

for the cyclones, and a better overall match for the curves in figure 16(b) could be
attained by decreasing the value of Ro for the cyclone, but this would then make the
fit in 16(a) worse. There is also a good degree of similarity in how the most unstable
wavenumber varies with Re and N for the cyclone and anticyclone. In figure 17(a),
we see that the overall trend for the variation of m with N is the same in both cases,
that is higher N results in higher m, although the slope of the curve is somewhat
lower in the cyclone case. The quantitative difference is at most about 3 over the
range of N investigated (corresponding to a difference of three rib vortices). For
the variation of m with Re shown (figure 17b), both qualitatively and quantitatively
the cyclone and anticyclone cases are very similar.

In studies of stratified Taylor–Couette flow (Hua, Le Gentil & Orlandi 1997a) and
horizontally sheared equatorial β-plane flow (Griffiths 2003a) the vertical wavenumber
m of the most unstable mode is found to scale asymptotically with N1/3 and Re1/3

for large Re in each case. Laboratory experiments with a homogeneous fluid (N = 0)
by Afanasyev & Peltier (1998) on the other hand suggest a scaling with Re1/2 but the
Reynolds number in those experiments did not exceed the modest value of 2500. Our
‘measurements’ shown in figures 8 and 17 were found to be best approximated for
the anticyclone by m ∝ N1/5 and Re1/3 but for the cyclone by m ∝ N1/8 and Re3/8,
respectively.

The analysis of Griffiths (2003a) further suggests that the growth rate of the fastest
growing vertical modes may to leading order be γ = |Φ|1/2m (1 − constant × N2/3Re−1/3)
for small N2/Re. Obviously this cannot be correct when N = 0 since, for finite Re,
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Figure 17. Vertical wavenumber m of the instability for a cyclone with Ro = 1.37 as a function
of (a) N2 with Re= 104 and (b) Re with N2 = 5. In each panel, the data (marked by �) are
taken at time t = 5 which is during the early part of the exponential growth phase of the
meridional energy. Also shown (thick solid lines) are power-law curves that approximately
fit the data. The dashed lines are curves through the corresponding anticyclone data with
Ro = −1 previously shown in figure 8.

the growth rate will depend on Re and be less than |Φ|1/2m . This inconsistency seems
to be due the hydrostatic approximation made by Griffiths. Figures 9(a) and 16(a)
suggest that for our vortices the correction for N 	= 0 to the growth rates found with
N = 0 at fixed Re are proportional to N for both anticyclones and cyclones. Further,
the corrections to the maximum growth rate γ∞ = |Φ|1/2m for finite Re seem to be of
order Re−1/3 for both the anticyclone (figure 9b) and the cyclone.

Any discrepancies between these empirically observed scalings here and for example
the scalings predicted by the analytical work by Griffiths (2003a) may be due to the
fact that our experiments were limited to rather small Re and N values. On the
other hand, that analytical work pertained to a parallel shear flow on the equatorial
β-plane (without horizontal diffusion and with the hydrostatic approximation) and
there is no reason to assume that those results should apply to our observations. It
is difficult to judge at this point whether our empirical scalings will hold over much
larger ranges of N and Re and whether one should expect the scaling to be the same
for the cyclone and anticyclone.

6.2. Re-formation of the cyclone

Given that the size of the instability region, and the variation of the vertical scale m

and the growth rate of the instability are similar for both the Ro ≈ 1.4 cyclone and
the Ro = −1 anticyclone, one might expect that the unfolding of the instability for
both would be alike. This is further suggested by the contour plots of the evolution
of ωθ in figure 18. Not only are there again dipolar structures that behave similarly to
those in the anticyclonic example (figure 3), but the peak values of ωθ are comparable.

In view of these favourable comparisons, one might expect that the effects of
the instability on the primary vortex would be similar. This is not the case. The
final equilibrated cyclones are very different from the equilibrated anticyclones. This
can best be demonstrated by showing how the velocity profile is changed by the
instability. In figure 19(a), the initial velocity profile is shown as a thin curve and the
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Figure 18. Evolution of ωθ in a vertical cross-section for the cyclone with α = 3, Ro = 1.4,
N2 = 2 and Re= 104. Thick/thin lines are used for +/− contours. The alternating sign of ωθ

indicates the alternating sense of rotation of the rib vortices that initially start in the unstable
region (between the solid vertical lines). The times are (a) t = 10, (b) t = 15, (c) t = 20 and
(d) t =25. Only a portion of the computational domain is shown. The contour intervals �ωθ

for each panel are: (a) 0.4, (b) 1.4, (c) 1.1 (d) 0.4. Pairing of rib vortices leads to propagating
‘dipoles’ which mix angular momentum both inside and outside the initial instability region.
Notice the similarities in the evolution with that of the corresponding anticyclonic case shown
in figure 3.

thick curves give the equilibrated profiles for two different values of Re (with N2 = 5).
In contrast to the anticyclonic case (see for example figure 10), there is very little
change in the profile apart from the overall decay in the low Reynolds number case
(Re =10 × 103). The main effect of the instability in the higher Re =50 × 103 case is
confined in and around the initial instability region where it has only slightly altered
the slope of the profile. The instability has not affected the core of the vortex. Since
the initial instability regions for both the cyclone and anticyclone in these examples
were relatively localized compared to the extent of the change in the cyclonic case,
and since in both cases the pairing of the rib vortices permitted the possibility of
propagation well beyond the instability region, it may be regarded as surprising that
the equilibration is far more localized and subtle in one case (the cyclones) compared
to the other (the anticyclones). This difference can be understood in terms of the
degree of angular momentum mixing needed to bring the instability to a halt, as
discussed further below.

In figure 19(b), we compare the equilibrated vortices for two values of N with
Re= 50 × 103. Again the initial profile is represented by a thin solid line. The N = 0
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Figure 19. (a) Vertically averaged swirl velocity v̄(r, t) is shown at time t = 80 for the case
N2 = 5 with Re =104 (thick solid), 50×103 (dashed). The initial α = 3, Ro = 1.4 profile is shown
as a thin solid curve. (b) v̄(r, t) for the cases N2 = 0 and 50 (thick curves, virtually coincident)
with Re= 50 × 103 at t = 80 (thin curve is the initial condition).
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Figure 20. ωθ in a vertical cross-section for the cyclone with α = 3, Ro = 1.4 for two values
of N . In each panel the time was chosen as that for which the maximum value of ωθ was near
its maximum value in time. (a) N2 = 0, t = 15 (contour interval �ωθ = 3), (b) N2 = 50, t = 20
(�ωθ = 6). In both cases Re= 50 × 103. Thick/thin lines are used for +/− contours. Only a
portion of the computational domain (0<r < 4) is shown.

and N2 = 50 data are both drawn as thick curves but they are almost identical and
overlap. As in the N2 = 5 case (panel a), there is almost no change from the initial
vortex profile except for the small change of slope in and around the initially unstable
region. The insensitivity to relatively large variations in N is rather remarkable in the
light of figure 20 which shows that the azimuthal vorticity field ωθ is very different for
N2 = 0 and 50. For N2 = 0 (figure 20a), the field is very turbulent and disorganized,
while for N2 = 50 (figure 20b) the field is ordered stack of thin rib vortices oriented
only horizontally. Apparently, whether chaotic or not, the evolution proceeds until
essentially the same stable state is achieved over a wide range N-values.
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Figure 21. (a) The angular momentum L̄= v̄r + 1
2
f r2 for the case Ro = 1.4, N2 = 5 with

Re= 50 × 103 at t =80 (thick solid). The initial condition is also shown (thin solid). Note that
the vortex is initially inviscidly unstable where the slope of L is negative (between r = 1.37 and
r = 1.82). (b) A close-up view of the angular momentum L̄ for the case N2 = 5 (thick solid) as
in panel (a) and additionally N2 = 50 (dashed) with Re= 50 × 103 at t =80.

How can it be that such seemingly similar instabilities, at least at first sight, produce
such different results? In both cases, the similarly evolving ωθ -fields which mix the
angular momentum are equally vigorous and extend beyond the initial region of
instability. But, in the anticyclonic case, the result is a significant change to the
velocity profile extending deep into the originally stable region of the core because
the dipolar vortices propagate well away from the instability region towards the centre
of the vortex. In the cyclonic case there is only a slight modification of the slope of
the velocity profile in a much more limited range, in and around the initial instability
region. Here the meridional motions remain confined to a spatially far more limited
region.

Some insight can be obtained by examining the evolution of the angular momentum.
Figure 21(a) shows the initial and equilibrated profile of the angular momentum, with
vertical lines marking the boundaries of the instability region in a simulation with
N 2 = 5 and Re= 50×103. Since L is positive for all r , for the instability to be complete,
at least in the inviscid sense, dL/dr must become non-negative everywhere. From
the graph of the initial condition, it is seen that this can be accomplished locally by
simply mixing the angular momentum from the relative maximum at the left-hand
end of the instability region with that from the minimum at the the right-hand end.
This seems to be precisely what has happened by time t =80 in figure 21(a).

How the equilibrated profiles of angular momentum differ for different values of N

is illustrated in figure 21(b) where we have enlarged the initial instability region shown
in panel (a) and added the result for N2 = 50. The lower the value of N , the flatter
the curve, in other words the more homogenized or mixed the angular momentum
has become. Curiously, the higher the value of N , the more positive the slope of
the angular momentum in this region. This could only be achieved by transporting
angular momentum from the area near the local minimum to the local maximum and
vice versa without thoroughly mixing it, which would have achieved homogenization,
that is uniform angular momentum (i.e. Q =(1/r)dL/dr ≈ 0). The more random eddy
activities in the low- N case as seen in figure 20(a) have mixed more thoroughly than
the orderly stack of rib vortices for higher N seen in figure 20(b). For a given N , the
higher the value of Re, the better should be the mixing and the flatter should be the
angular momentum in and around the initially unstable region, and correspondingly



Inertial instability in rotating and stratified fluids 405

Re = 50 × 103

104 Re = 104

50 × 103

2.0

2.5

1 2
r

0.2

1.2 2
r

(a) (b)

L Q

Figure 22. (a) A close-up view of the angular momentum L̄ = v̄r + 1
2
f r2 for the case Ro = 1.4,

N2 = 5 with Re= 50 × 103 (thick solid) and Re= 104 (dashed) at t = 80. Note that the vortex
is initially inviscidly unstable where the slope of L is negative (approximately from r = 1.37
to 1.82). (b) A close-up view of the potential vorticity Q̄ = ω̄z + f = L̄r/r for N2 = 5 with
Re =50×103 (thick solid) and Re= 104 (dashed) at t = 80. In both panels, the initial condition
is also shown (thin solid).
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Figure 23. (a) Construction to determine the new angular momentum and hence the new
azimuthal velocity field that would hypothetically result due to mixing of angular momentum
for a cyclone. The thin curve is the angular momentum of the original α = 3 cyclonic vortex with
Ro = 1.4. The thick curve is the proposed re-equilibrated angular momentum. r− and r+ delimit
the region where Q = 0 in the equilibrated vortex and r0 and r1 delimit the instability region.
(b) The azimuthal velocity field based on the hypothetical equilibrated angular momentum
shown in (a).

the lower the value of |Q̄| there. This is confirmed in figure 22 where we show L̄ and
Q̄ for N2 = 5 and Re= 10 × 103 and Re = 50 × 103.

6.3. Infinite-Reynolds-number limit

Based on these results and similar results for other values of Re and N , we arrive
at the speculation that as Re → ∞ for any given N , the final angular momentum
would be uniform in and around the initially unstable region. Extrapolating from
figures 21 and 22, we propose that the equilibrated L for Re → ∞ will be of the form
shown in figure 23(a). There will be a region of homogeneous, that is constant, L

from a point r− to the left of the initial instability region to r+ to the right of the
initial instability region. This region of constant L is constructed by assuming the
total angular momentum is the same before and after the instability. The equation
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Figure 24. Velocity and potential vorticity profiles for a cyclone with Ro = 4 and N = 0.
(a) The velocity profiles V for the initial condition (thin line) and the prediction (thick line).
The data for the vertically averaged velocity v̄ at t = 5 (Re= 25 × 103) are shown as circles.
The vertical dashed lines delimit the unstable region, 1.24 <r < 2.11. (b) The potential vorticity
profile for the initial condition (thin line) and the prediction (thick line). The points r− and r+

delimit the region of Q =0 predicted by our construction. The unstable region is where Q < 0
in the initial profile.

that determines the value of the angular momentum in this region and the positions
of its boundaries r− and r+ is ∫ r+

r−

(L − Lc)r dr = 0, (6.1)

where L(r) = V (r)r + 1
2
f r2 and V (r) the initial profile. Equation (6.1) was solved

numerically for Lc, r− and r+. For a test r−, there is a corresponding test Lc = L(r−).
The integral is computed using these test values, and if no r+ could be found for
which the integral vanished, another choice was made for r−. Once Lc, r− and r+

are determined the new L(r) is defined, and this is shown as the thick solid line in
figure 23(a). From this L(r), one then constructs the equilibrated velocity profile from
the equation L(r) = v̄(r)r + 1

2
f r2 (see figure 23b). That is, the equilibrated profile will

have v̄(r) = V (r) for 0 � r � r− and v̄(r) = V (r) for r � r+ while for r− � r � r+

we have v̄(r) = Lc/r − 1
2
f r . The construction shown in this figure corresponds to the

cyclone studied in this section with α =3 and Ro = 1.4. The hypothesized profile is
very similar to the Re = 50 × 103 case shown in figure 19.

Not shown here are how r− and r+ vary with the Rossby number. With increasing
Ro, r− shifts further inwards (towards the origin) while r+ increases. For the α = 3
case we find that for Ro ≈ 2.2, we have r− = 1 so that the equilibrated profile starts
at the original position of the peak velocity of V (r). For Ro beyond 2.2, r− will be
to the left of the original peak position, and hence the core of the cyclone will be
changed by the instability.

Experiments with Ro = 3 and Ro =4 lent further support to our hypothesis: in
both cases the peak velocity dropped to smaller values and the peak velocity
position is at r < 1, at smaller r for Ro = 4 than for Ro = 3, as predicted by our
theoretical construction. A case with Ro = 4 is illustrated in figure 24(a). There is
excellent agreement between the prediction and the simulation. The evolution is very
rapid and equilibration towards the predicted form occurs in a relatively short time.
The adjustment here is somewhat different from what we observed in the high-Ro
anticyclone case discussed above where a long equilibration time was required because
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the core equilibrated much more slowly than the region in and around the instability
region.

As in the case of the anticyclone, the idea of potential vorticity mixing alone is
insufficient to predict the equilibrated state in inertial instability. As for the anticyclone,
achieving stability requires creation of a region with Q =0 or equivalently uniform
L. In figure 24(b), we show the graph for the potential vorticity in the Ro =4 cyclonic
case, along with two vertical lines that mark the end points, r− and r+, of the region
where Q has been brought to zero to achieve equilibrium. Note that the instability
region is where Q < 0, and the equilibrated Q =0 region extends beyond this on
both sides. If we consider just mixing Q, say in a way that conserves the total
(
∫

Qr dr), there are insufficient constraints to determine the end points r− and r+. For
example, one can see from the graph that Q � 0 and L � 0 while preserving total Q

could also have been achieved by mixing all negative Q from the instability region
r0 <r < r1 with positive Q from r > r1. Then Q =0 between r = r0 and some r = r� > r+

and for r > r� Q would be the same as initially (positive). We have to consider L

as the primary quantity so that unambiguously L(r) =
∫ r

0
Q(r ′)r ′ dr ′ (no additional

integration constants). Then with the above choice it follows that L(r�) = L(r0). Since
r0 is where the local maximum seen in figure 23(a) occurs, r� is simply where a
horizontal line tangent to that maximum at r = r0 intersects the L-curve beyond
r = r+. Hence for r0 < r < r�, the proposed L-distribution would everywhere lie above
the initial L, while for r � r� and 0 � r < r0, L is unchanged. At r = r� the velocity
field is continuous but not its derivative (Q jumps from 0 to, for example, Q ≈ 1 if r�

is large). From this it follows that with this proposed Q-mixing, total L would have
increased as well as total kinetic energy, both of which are unacceptable.

Generally we expect that any flow with an L-distribution similar to that shown
in figure 15(b) and subsequent figures will adjust in the high-Reynolds-number limit
according to the construction discussed here. That is, any simple flow that has
positive L everywhere but with an adjacent local maximum and minimum, with
inviscid instability guaranteed since Q < 0 between these extrema, will approach an
equilibrium with constant L =Lc in a range that can easily be determined.

As in the anticyclonic case, we may now predict the amount of kinetic energy that
would be lost during the equilibration in the Re → ∞ limit. This is shown for both
α = 2 and α = 3 vortices in figure 25. For Ro = 1.4 in the α =3 case, the hypothetical
energy loss is about 3 %, which is very close to what we measured in our Re = 50×103

simulations shown in figure 19. For Ro = 4 the predicted loss is 33 %, whereas in the
simulation shown in figure 24 the actual loss is 36 %. For α = 2, Ro > 2.24 is required
for Φ < 0 compared to Ro > 1.01 when α =3, hence the higher Ro-values used in
figure 25(a) in the α =2 case.

7. Summary and discussion
Based on the experiments discussed above, we have arrived at a theoretical

construction that predicts how, in the limit of infinite Re, inertial instability acting
alone will stabilize an initially unstable vortex via angular momentum redistribution,
preserving total angular momentum. We have found that for vortices that have
absolute angular momentum distributions with L < 0 for some finite range starting
at the centre r = 0, and L > 0 and monotonically increasing for larger r (as in
figure 2b or figure 12a), the equilibrated vortices that emerge from the instability in
the high-Reynolds-number limit tend to be determined by the simple construction
sketched in figure 12. The prediction is that the equilibrated vortices will have
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Figure 25. The ratio of final equilibrated Eeq kinetic energy to initial kinetic energy E0 as a
function of the Rossby number for the hypothetical transition of an unstable cyclonic vortex
to the final stable vortex due to inviscid mixing of momentum. Two cases are shown: (a) α = 2
and (b) α = 3.

solid-body rotation v̄ = − 1
2
f r from the centre r = 0 outwards, with a sharp transition

in the v̄-field around r = rc to much smaller velocities. For finite Re, this transition
is smooth, but with increasing Re it becomes more rapid and very large gradients in
L̄ with corresponding large positive Q̄ can be established. The extent of the region
of solid-body rotation is determined by the requirement that, between r =0 and
r = rc, absolute angular moment mixing homogenizes L to L̄ ≈ 0 in that region, thus
rendering the equilibrated vortex close to neutrally stable in the inviscid sense (Φ � 0).
Numerical evidence for example shown in figures 10(b) and 13(a) and additional
simulations we have run with different initial velocity distributions indicates that
the construction can be applied to a wide variety of vortices as long as the initial
L-distribution is of the simple type discussed here.

Vortices with a positive L-distribution such as for example shown in figure 15(b)
and 23(a), adjust in the high-Reynolds-number limit to a stable equilibrium according
to the construction shown in 23(a). In such flows the instability mixes absolute angular
momentum over a range starting to the left of the local maximum (where the region
of instability starts) to a point to the right of the local minimum (beyond the region
of instability where Q < 0). In this range L is homogenized to a constant value Lc

which is determined by the constraint that total angular momentum is conserved. In
particular the example shown in figure 24(a) shows how well the prediction works.
In contrast to the anticyclonic flows which re-form with rapid changes in L̄ (and
corresponding changes in v̄), the equilibrated vortices in these cases do not re-form
with steep velocity gradients.

These constructions can be applied in more complicated circumstances than
discussed above. An illustration of this is given in figure 26 for the case of anticyclones
with α = 10. Panels (a) and (b) pertain to the case with Ro = −0.48, which is interesting
because it is an anticyclone with all L positive, unlike the anticyclones considered
above with negative L at small r . In this case, the contruction previously used for
anticyclones (figure 12) does not apply. However, we note that the shape of the
angular momentum curve is like that of the cyclones considered above and apply the
construction sketched in figure 23(a) to this anticyclone. This gives the predicted L

(thick line in figure 26a) and the predicted velocity v̄ (thick line in figure 26b). It
is interesting that the prediction does not give solid-body rotation in the core, as in
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Figure 26. Predictions and results for unstable anticyclones with α = 10. (a) Absolute angular
momentum L for the initial conditions (thin) and the prediction (thick) for Ro = −0.48.
(b) The initial velocity profile (thin) V , the predicted velocity profile (thick), the measured v̄
at t = 40 (circles). (c) L for the initial conditions (thin) and the prediction (thick) for Ro = −1.
(d) Initial velocity profile (thin) V , the predicted velocity profile (thick), the measured v̄ at
t =100 (circles). In both cases Re= 40 × 103 and N = 0.

all previous anticyclonic cases. Here the redistribution of L does not reach to the
axis. The data points in figure 26(b) are the vertically averaged velocity at t = 40.
The flow has rapidly adjusted to the predicted profile. So there are cases in which the
construction that we previously applied to cyclones is appropriate to the anticyclone;
the initial distribution of L determines which construction is appropriate, not just the
sign of Ro.

Figure 26c for the Ro = −1 case illustrates another way in which these constructions
generalize. Here we have an anticyclone with positive L at small and large r , and
negative L between. The total of the positive L at small r alone is insufficient to
balance the total negative L, thus some L from higher r must be mixed in to reach
a state of L =0. The extension of the construction shown in figure 12 to this case is
shown by the thick line in figure 26(c). The prediction for the velocity field (thick line
in figure d) is verified well by the numerical simulation data at t = 100.

Decreasing Ro from −0.48 to −1, we pass through a state in which the total
negative L is equal in magnitude to the total positive L at small r . In this case
both constructions are equivalent if we allow the construction of figure 26(a) to be
applied even if the local minimum of L has L < 0. This simple generalization allows
one to pass from one construction to the other smoothly as Ro decreases. Extensions
to far more complicated profiles will require further generalization and this will be
considered in future work.
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Figure 27. (a) Equilibrated velocity profiles from simulations with Re = 104 and N = 0 for
anticyclones with Ro= −1 and α =2 (thick dashed line) and α =3 (thick solid line). Also
shown are the initial velocity profiles (thin dashed, α = 2; thin solid, α = 3). (b) Profiles from
(a) scaled such that in each case the minimum amplitude is −1 at position r = 1.

These constructions allow one to estimate how much energy is lost during the
adjustment process. It is entirely determined by the kinetic energy contained in the
equilibrated flows since negligible amounts of energy are lost through density mixing
(potential energy) or internal wave radiation. However, in this study we maintained
circular symmetry by suppressing the development of any θ-variations in the fields.
It may be that significantly larger losses due to density mixing and wave radiation
occur if azimuthal variability is allowed. Also, in that case the vortices may develop
barotropic (horizontal shear) instabilities characterized by growing perturbations
proportional to φ(r) exp(ilθ). In this regard, consider figure 27 where we show the
equilibrated anticyclones from numerical simulations both for α = 2 and α = 3. In
figure 27(a) the solid-body rotation in the core of the vortices is obvious. Also shown
there are the initial profiles. After rescaling such that both have an amplitude v̄ = 1
at r = 1, we see in panel (b) that in both cases the profiles have become far steeper
after having undergone the inertial instability. Analyses by, for example, Flierl (1988),
Carton & McWilliams (1989), Carnevale & Kloosterziel (1994) and many others, have
shown that such such steep flow profiles are prone to being barotropically unstable.
In contrast, as discussed in § 6.3, for moderate Rossby numbers cyclones are virtually
unaltered by inertial instability. When Ro is large (figure 24) significant changes occur
in that the peak velocity is lowered and the position shifts inwards, affecting the core
of the vortex, while the ‘tail’ of the adjusted velocity profile spans a wider region with
velocities higher than initially. It is clear that in this case, if for example the profile
shown in figure 24 is rescaled so that the peak velocity and position coincides with
the original peak and position, the adjusted profile has become less steep. Thus, unlike
the anticyclones, inertially unstable cyclones of the type studied here may emerge
barotropically more stable (less steep) after having undergone the inertial instability.

If a vortex is inertially unstable as well as barotropically unstable, both instabilities
may occur simultaneously (for studies of the ‘competition’ between pure inertial
instability and the azimuthal (barotropic) shear instabilities, see for example Smyth
& McWilliams 1998; Orlandi & Carnevale 1999 and Gallaire & Chomaz 2003). If
they occur simultaneously, very chaotic and unpredictable behaviour can ensue, as
is easily verified with rotating tank experiments (see Kloosterziel 1990; Afanasyev &
Peltier 1998). For example, by simply stirring the rotating fluid in the anticyclonic
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direction, one observes (when the Rossby number is negative enough) an explosive
inertial instability. Then, as the flow is still in the process of becoming barotropic
again (z-independent), almost invariably far from circular, complicated flow patterns
are observed (see Kloosterziel & van Heijst 1991; Carnevale & Kloosterziel 1994;
Orlandi & Carnevale 1999) which can be thought of as the result of having various
azimuthal modes compete (for examples of inertially unstable non-circular vortices
showing rather complicated flow evolutions, see Polylitsin & Peltier 2003). From
one experiment to the other, even if great care is taken to reproduce the initial
conditions, the outcome can vary a great deal. Thus, we believe that to some extent
such observations can be explained with our present work, which shows that inertially
unstable anticyclones tend to re-form with much steeper profiles than initially which
then become barotropically unstable. This scenario is too simple, since typically
even when the overturning motions associated with ‘pure’ inertial instability are still
present, one usually observes the first signs of non-circular flow patterns. So, if the
constraint of circular symmetry used in the present study is relaxed many possible
scenarios for the evolution are possible.

Finally, we should mention here that part of the motivation for the work presented
here was the oceanographic observations of anticyclonic eddies that have Rossby
numbers close to a value for which Φ � 0 everywhere. For example, Flament et al.
(2001) report a detailed observation of a strong anticyclonic eddy which moved south-
westward from the island of Hawaii with roughly solid-body rotation v ≈ − 1

2
f r in

the core up to the velocity peak. They surmized that this eddy had undergone inertial
instability prior to the observations since this sets Φ � 0 everywhere. The present
study suggests that they were correct.
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